Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577414

RESUMO

Rainforest conversion and expansion of plantations in tropical regions change local microclimate and are associated with biodiversity decline. Tropical soils are a hotspot of animal biodiversity and may sensitively respond to microclimate changes, but these responses remain unexplored. To address this knowledge gap, here we investigated seasonal fluctuations in density and community composition of Collembola, a dominant group of soil invertebrates, in rainforest, and in rubber and oil palm plantations in Jambi province (Sumatra, Indonesia). Across land-use systems, the density of Collembola in the litter was at a maximum at the beginning of the wet season, whereas in soil it generally varied little. The community composition of Collembola changed with season and the differences between land-use systems were most pronounced at the beginning of the dry season. Water content, pH, fungal and bacterial biomarkers, C/N ratio and root biomass were identified as factors related to seasonal variations in species composition of Collembola across different land-use systems. We conclude that (1) conversion of rainforest into plantation systems aggravates detrimental effects of low moisture during the dry season on soil invertebrate communities; (2) Collembola communities are driven by common environmental factors across land-use systems, with water content, pH and food availability being most important; (3) Collembola in litter are more sensitive to climatic variations than those in soil. Overall, the results document the sensitivity of tropical soil invertebrate communities to seasonal climatic variations, which intensifies the effects of the conversion of rainforest into plantation systems on soil biodiversity.


Assuntos
Artrópodes , Solo , Animais , Solo/química , Floresta Úmida , Estações do Ano , Invertebrados , Água
2.
Ecol Evol ; 11(15): 10686-10708, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367606

RESUMO

Rainforest conversion and expansion of plantations in tropical regions are associated with changes in animal communities and biodiversity decline. In soil, Collembola are one of the most numerous invertebrate groups that affect the functioning of microbial communities and support arthropod predators. Despite that, information on the impact of changes in land use in the tropics on species and trait composition of Collembola communities is very limited. We investigated the response of Collembola to the conversion of rainforest into rubber agroforestry ("jungle rubber"), rubber, and oil palm plantations in Jambi Province (Sumatra, Indonesia), a region which experienced one of the strongest recent deforestation globally. Collembola were sampled in 2013 and 2016 from the litter and soil layer using heat extraction, and environmental factors were measured (litter C/N ratio, pH, water content, composition of microbial community and predator abundance). In the litter layer, density and species richness in plantation systems were 25%-38% and 30%-40% lower, respectively, than in rainforest. However, in the soil layer, density, species richness, and trait diversity of Collembola were only slightly affected by land-use change, contrasting the response of many other animal groups. Species and trait composition of Collembola communities in litter and soil differed between each of the land-use systems. Water content and pH were identified as main factors related to the differences in species and trait composition in both litter and soil, followed by the density of micro- and macropredators. Dominant species of Collembola in rainforest and jungle rubber were characterized by small body size, absence of furca, and absence of intense pigmentation, while in plantations, larger species with long furca and diffuse or patterned pigmentation were more abundant. Overall, land-use change negatively affected Collembola communities in the litter layer, but its impact was lower in the soil layer. Several pantropical genera of Collembola (i.e., Isotomiella, Pseudosinella, and Folsomides) dominated across land-use systems, reflecting their high environmental adaptability and/or efficient dispersal, calling for studies on their ecology and genetic diversity. The decline in species richness and density of litter-dwelling Collembola with the conversion of rainforest into plantation systems calls for management practices mitigating negative effects of the deterioration of the litter layer in rubber plantations, but even more in oil palm plantations.

3.
PeerJ ; 9: e10971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717699

RESUMO

Intensively managed monoculture plantations are increasingly replacing natural forests across the tropics resulting in changes in ecological niches of species and communities, and in ecosystem functioning. Collembola are among the most abundant arthropods inhabiting the belowground system sensitively responding to changes in vegetation and soil conditions. However, most studies on the response of Collembola to land-use change were conducted in temperate ecosystems and focused on shifts in community composition or morphological traits, while parameters more closely linked to ecosystem functioning, such as trophic niches, received little attention. Here, we used stable isotope analysis (13C and 15N) to investigate changes in the trophic structure and use of food resources by Collembola in Jambi province (Sumatra, Indonesia), a region that experienced strong deforestation in the last decades. Isotopic values of Collembola from 32 sites representing four land-use systems were analyzed (rainforest, rubber agroforest, rubber (Hevea brasiliansis) and oil palm (Elaeis guineensis) monoculture plantations). Across Collembola species Δ13C values were highest in rainforest suggesting more pronounced processing of litter resources by microorganisms and consumption of these microorganisms by Collembola in this system. Lower Δ13C values, but high Δ13C variation in Collembola in oil palm plantations indicated that Collembola shifted towards herbivory and used more variable resources in this system. Small range in Δ15N values in Collembola species in monoculture plantations in comparison to rainforest indicated that conversion of rainforest into plantations is associated with simplification in the trophic structure of Collembola communities. This was further confirmed by generally lower isotopic niche differentiation among species in plantations. Across the studied ecosystems, atmobiotic species (Symphypleona and Paronellidae) occupied the lowest, whereas euedaphic Collembola species occupied the highest trophic position, resembling patterns in temperate forests. Some species of Paronellidae in rainforest and jungle rubber had Δ15N values below those of leaf litter suggesting algivory (Salina sp.1, Callyntrura sp.1 and Lepidonella sp.1), while a dominant species, Pseudosinella sp.1, had the highest Δ15N values in most of the land-use systems suggesting that this species at least in part lives as predator or scavenger. Overall, the results suggest that rainforest conversion into plantation systems is associated with marked shifts in the structure of trophic niches in soil and litter Collembola with potential consequences for ecosystem functioning and food-web stability.

4.
Ecol Evol ; 9(16): 9027-9039, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463001

RESUMO

In the last decades, lowland tropical rainforest has been converted in large into plantation systems. Despite the evident changes above ground, the effect of rainforest conversion on the channeling of energy in soil food webs was not studied. Here, we investigated community-level neutral lipid fatty acid profiles in dominant soil fauna to track energy channels in rainforest, rubber, and oil palm plantations in Sumatra, Indonesia. Abundant macrofauna including Araneae, Chilopoda, and Diplopoda contained high amounts of plant and fungal biomarker fatty acids (FAs). Lumbricina had the lowest amount of plant, but the highest amount of animal-synthesized C20 polyunsaturated FAs as compared to other soil taxa. Mesofauna detritivores (Collembola and Oribatida) contained high amounts of algal biomarker FAs. The differences in FA profiles between taxa were evident if data were analyzed across land-use systems, suggesting that soil fauna of different size (macro- and mesofauna) are associated with different energy channels. Despite that, rainforest conversion changed the biomarker FA composition of soil fauna at the community level. Conversion of rainforest into oil palm plantations enhanced the plant energy channel in soil food webs and reduced the bacterial energy channel; conversion into rubber plantations reduced the AMF-based energy channel. The changes in energy distribution within soil food webs may have significant implications for the functioning of tropical ecosystems and their response to environmental changes. At present, these responses are hard to predict considering the poor knowledge on structure and functioning of tropical soil food webs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...